Category Theory and Galois Theory

نویسنده

  • Amanda Bower
چکیده

Galois theory translates questions about fields into questions about groups. The fundamental theorem of Galois theory states that there is a bijection between the intermediate fields of a field extension and the subgroups of the corresponding Galois group. After a basic introduction to category and Galois theory, this project recasts the fundamental theorem of Galois theory using categorical language and illustrates this theorem and the structure it preserves through an example. Acknowledgements: I would like to sincerely thank Professor Thomas Fiore for his continual support, encouragement, and invaluable guidance throughout this entire project. Page 134 RHIT Undergrad. Math. J., Vol. 14, No. 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids

This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...

متن کامل

Categories of lattice-valued closure (interior) operators and Alexandroff L-fuzzy topologies

Galois connection in category theory play an important role inestablish the relationships between different spatial structures. Inthis paper, we prove that there exist many interesting Galoisconnections between the category of Alexandroff $L$-fuzzytopological spaces, the category of reflexive $L$-fuzzyapproximation spaces and the category of Alexandroff $L$-fuzzyinterior (closure) spaces. This ...

متن کامل

Deformation of Outer Representations of Galois Group II

This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for...

متن کامل

Universal Covers and Category Theory in Polynomial and Differential Galois Theory

The category of finite dimensional modules for the proalgebraic differential Galois group of the differential Galois theoretic closure of a differential field F is equivalent to the category of finite dimensional F spaces with an endomorphism extending the derivation of F . This paper presents an expository proof of this fact modeled on a similar equivalence from polynomial Galois theory, whose...

متن کامل

Galois Categories

In abstract algebra, we considered finite Galois extensions of fields with their Galois groups. Here, we noticed a correspondence between the intermediate fields and the subgroups of the Galois group; specifically, there is an inclusion reversing bijection that takes a subgroup to its fixed field. We notice a similar relationship in topology between the fundamental group and covering spaces. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013